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1.    Introduction and 

In dealing vlth the problem of the response of panel* under blast 

loads, such a* from the firing of guns or rockets, it has been observe! that 

the severity of the damage depends upon the speed of the aircraft.    from cer- 

tain elementary considerations ot the nature of the blast load (to be reported 

elsewhere), the reasons behind the plienomenon can be qualitatively explained. 

It is also  clear, however,  that the surrounding fluid might have some  influence 

on the response through its reaction on the  transient motion ot the panels in 

question.    To determine the approximate nature and the order of magnitude of 

such aerodynamic effects, an idealised two-dimensional configuration has been 

studied and the results are presented in this report. 

The simplified configuration treated consists of the following:  the 

skin structure is represented by a flat sheet of infinite length, over which 

a uniform stream flows at a velocity, \J   .    The motion for each panel is con- 

sidered separately,  so that at one time  there is only a "bump", in transient 

motion, on an otherwise flat sheet.    The aerodynamic reaction induced by the 

motion of the bump Is derived on the basis of small disturbances and incom- 

pressible potential flow.    If there are several panels excited into motion 

simultaneously,  the resultant aerodynamic reaction on each panel can be con- 

structed by means of superposition. 
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In particular, a uniform panel with simply-supported ends la 

treated In detail in terra of normal coordinate•.    The Important dimension- 

laaa parameters entering the problem are the usual reduced frequency and 

maaa ratio (panel to air), aa in all oscillating aeroelaetie phenomena.    The 

modifications on the vibration characteristics are discussed.    The natural 

frequency is, each *~.*-:. tends to be reduced, a§ the &rparent mass and the 

quasi-steady forces both contribute to this reduction.    The reduction in the 

lover natural frequencies, compared with the frequencies in vacuo, la of the 

order of a few percent for a typical duralumin panel on an aircraft moving 

at an average speed, but may become large for more flexible panels and for 

panels on submarines under water*    Tbs higher natural frequencies are practi- 

cally unaffected by the surrounding fluid. 

An indication is further made for the condition for dynamic insta- 

bility based upon a representation of the two lowest modes.    It is found 

that for typical aircraft panels, instability is essentially caused by tho 

quasi-steady forces.    The aerodynamic damping makes r^ry little contribu- 

tion under ordinary circumstances. 

It is hoped that, despite the over-simplification of the two- 

dimensional treatment, application to actual cases may be made for first 

order estimations.    This may be done, for example, by using the concept of 

the "representative section1 well-known in the field of aeroelastlcity. 
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Consider  the complex potential 

(1) 

where 2 » z + iy, and h may be complex. 

It can easily be shown that, within the scope of linearised theory for small 

disturbances, such a function represents the disturbance potential due to a 

sinusoidal boundary of period -5^"  t the boundary being taken to be close to 

the x-axis. Regarding Zq. (1) as an elementary solution, the velocity poten- 

tial for any arbitrary boundary shape can be constructed immediately by super* 

position, and is seen to be 

(2) 

or 

(p,Rl^f^(fiC)t
i9C'doc\ (3) 

Differentiating, we obtain 

*r ^f/"^"^'006'"^*) 
On the boundary,  therefore,  the derivative is 

(<0 
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/- 
(*a) 

where Ti(oL) denotes the conjugate of hfrC) 

If the derivative Q J is sspanded by the Jburier integral, 

we nay write 

vi..-/"8^'"*' (5) 

-(*> 
cf'* 6to)e      »Bf-*)e        d <x 

But, with the relationship that. 

•iL becomes 
<T 

^,/J   fB(V)e      + 8ro,)e        -U 

(5*) 

(5b) 

(6) 

Comparing Zq. (5b) with 3q. (4a), we may conclude that 

Tho function, B(ot), of course is the inverse transform of ^^ju,o 

BW-^/^L^* <** (7) 

Hence, with the given normal velocity, Wul0   ,  the disturbance potential 

can be evaluated. 
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3. Application to the Transient Motion of s Bump 

In studying the problem of the transient motion of a "bump", the 

surfaces adjacent to the "hump1 are assumed to he flat and to extend to 

infinity. The air stream, of Telocity, \j   , is taken to he parallel to the 

flat boundary. The x-axls is chosen to coincide with the flat boundary, and 

the 'bump1' extends over in the interval, o* > ^ TT  . Displacements of the 

"bump" are considered small, so that the boundary conditions are approximately 

satisfied on y * 0. 

Thus, if y • f (x,t) represents the Instantaneous shape of the 

bump, the boundary condition to be satisfied by the disturbance potential is: 
0 

Also, in order for the disturbance to die out at large distances from the panel,, 

the conditions 

 -a> (9) ^   and      0,. —•• 0    as      /x/ or <j>     or both 

and 

I P^l       dx *o 
.0 

do) 

must be satisfied.    Condition (9) is self-evident.    Condition (10) represents 

the "closure1 requirement, i.e., the Instantaneous streamline must adhere to 

the flat boundary after passing the bump. 

It is obvious that, if the instantaneous shape of the "bump" is 

defined by the equations 
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(11) 

The shape may he redefined In terms 0/ a ?curler series, so that 

c/ « S"      *n(-t) Sin  r»x o * X if 

elsewhere 

(12) 

Here it Is assumed  that the hump starts from zero at x • 0 and x * T .    If  the 

"bump0 represents a panel of homogeneous material and of constant thickness, 

each Fourier component corresponds to a normal mode, and <L.(t)  corresponds to 

the  transient deflection in terms of the normal mode components.    By introduc- 

ing Eqs.   (11) and (12) into Eq.   (8)   the "boundary condition becomes 

V»=oCV -4. *%„<*>"» n* + i(*'n(*)sl" n* n--i 

= EAjt)cos(n»-JB^o  * x <Tf 

elsewhere 

« 

- O 

(13) 

And consequently,  the problem is reduced to finding a velocity potential 

satisfying each term of Eq.   (13), namely, 

^u/a-o'^tOc-osCnx-O 
Hltk 

•=• O 

O*X*TTI 

elsewhere J 
U3») 

together with conditions (9) and (10).    The complete solution is then ob- 

tained by superposition. 

Proceeding as indicated above, for Bq.   (13a) we obtain by using 
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H. (7). 
8>)'S cos (wx-/,J e 

^"""Nr 

* t «> 

2 Oe c«5 <*£ -Sir?   St» /", 

na- OC* *J (1<0 

It follows from Iq.  (6), that 

and, finally, from Sq..  (3) and with y • 0, wo MO that 

6  I        --dllcosX   f -cos nTT-St- ^(TT-x)-st 
YD'r°     "       •-!    rT"^ 

n of x d* 

^KSin|   f cos n^r. cos^Crf-^-cos *x d yr 

Next, the functions, 

I2^'J)- J«[Ci(^> C»S jpj*Sl(f>o/>S<i. J,o/J 
(17) 

may he defined where Ci(k ) and Si(t ) are the coeine and sine integrals* 

respectirely 

*    These integrals are tabulated, e.g. ,  in Ttef.  2. 
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de a (3)./-^ 

sAi)*J* *in t <* 
(18) 

Both integrals in 5q.   (16) show singular it let within the range of integra- 

tion, hat difficulty will only he encountered at the origin, tC   * 0. 

Expanding lq.  (16) into partial fraction* and integrating, we obtain 

— n Sin /n["co$ n TT X^ (ir-»t»)-lg (*,*)] + 

1 

TT n        f-o   [ J 
(19) 

For oven values of n, ve have (Bef.  2) 

fLmJ-6(<"-*W+Cif*e)J. **l£zl (20) 

But for odd raluee of n, there is a divergence of <pn even for large values 

of I x( , and thus condition (9) is not satisfied. 

The source of this difficulty can he traced tc the fact that the 

closure condition, condition (10), is not satisfied by that part of $aL% 

* a 
specified by Sq.  (13a), which is associated with sin Jn   . 
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Defining the function 

we see that 
x o elsewhere  J 

J  Ah Sin fnSLn nx d* ~Ar> Sin J» (,-cos nir) 

^ o if  n la odd 

(21) 

Xq.   (21) defines a constant displacement of the stream line in the y-direction. 

As shown In Appendix A, the addition of another "bump" in the form of a step 

eliminates this constant displacement, and the closure condition is satisfied. 

The divergent term in Iq.  (19) then disappears.    It follows, therefore,  that 

where 

6 j =» - 6lL  Cos  (S-C*S nTT   Xl(7T~x,n)~£l(xJn)Ji- 
nl a-.o *7f 

4tn   sen   in[cos *•  Xi('TT'*i»)-Ii,(x,r>)+Ij] 

(19a) 

X3= "^ ^/ir^/       for«• (22) 

=   0 for odd       D 

Rewriting I, and I2 according to their definitions, Sqs. (17). we 

oh tain finally. 
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*./,./•M6<f">M»"'*s f/7 *)   C«S OXh *• 

^2l/C. (nx)  cos  nx - •5, f/jxj  5'* nxl+ 

Jfc'$ nir Ans   SL»I-*- ./ (23) 

where A     and AQa are abbreviation! for A^ coa 
'n and An pin 6n  respectively. 

and 

C,(nx)-   Ct  CnTT-ox-)-Ct Cn O 
| 

(2U) 

S, (r»x)' 5t (wTT-nx) +Si(^) J 
Since, by definition, 

c*f-3J»Cirjj 

scr-jj.-siri) 

the condition that 

(^u.0 — 0    as    x-« 

ia aatiafied aa required. 
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U.    The Pressure Distribution 
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Earing obtained the solution for f   n in Eq.   (23), we may now 

evaluate the pressure distribution along the "bucp".    The pressure is given 

with the pressure on the underside (7 3 -0),  taken to be the same as that at 

infinity. 

Differentiating Eq.  (23), we obtain for the nth component, 

where 

( ~s 

A 
f   I I 

TW7i A»s I /*/ ~/V-K/ j 
(26) 

(27) 

After simplification,  in the region O^X-Tf   , i.e., along the  "bump" 

AERO-ELASTIC ANDSTf 
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ft,,*/       - -^llllc/n*) Cos  n> - 5, (nx)<*in   n *J - 

*HL\c,(nx) sin 77x i-S^nxJ c*s  nx •+       (28) 
-IT  L 

I-COS OTT/'i I        \ -y 

fcr? 

for points beyond the "bump", a corresponding expression may readily be 

written, which should be used when the mutual influence of two adjacent 

"bumps" is to be computed.    This, however, is omitted here. 

Since, by definition,  the following symmetry holds: 

C,(nx)-*-C, (ttir-n*) 

it may then be verified that: 

(1) for n • odd,  the part of $, x/ % in Xq.   (28)  due  to Anc is 

symmetrical with respect  to  the mid-point;   the part due  to AQg is 

anti-symmetrical; 

(2) for n * even,   the part due  to A^ is anti-symmetrical with respect 

to the mid-point;  the part due to Ka% is symmetrical. 

It will be seen that the last term in Sq..   (28)  involves singulari- 

ties at the leading and trailing edges.    This may be interpreted as being due 

to an effective movement of  the segment,   CSx< TF   , as a rigid body from 

the flat boundary.    The  rest of  the terms result from the deformation about 

AERO-ELASTIC AND STRUCTURES RESEARCH 
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this means position. 

Tor the contribution due to ^    , the  same expression, Iq.  (23), 

may be used except that the amplitudes A&e and A     must be replaced by their 

derivatives kne • •*     (A^) and i^, « cL (A^) respectively.    Thus 

0„4/      » — Z5i rC|Cn>e) 5iV» r>* +5,(n>0 cos nxj* 
J  'Uso PIT *• 

A^ ["(^(nx) CoS n* -S,tn*)scn  nX   + 

art 

(29) 

Ve are now in a position to evaluate the total change of pressure 

due to the motion of the "bump's 

Ap*~^u!k A J   -pi <t>nt/ 

«»*   ^x/r<J   -fcW given by Sqs.   (28) and (29). 

(30) 

*o 

5.    Generalised Torces on a Uniform 3imply-Supported Panel IXie to Aerodynamic 

Pressure 

For a homogeneous panel of uniform thickness,  the Fourier components 

of the deflection are identical with the normal modes.    The coefficients, 

<ln(t), in Eq.   (12),  therefore, represent the deflection in terms of normal 

AEKO-ELASTIC AND STRUCTURES RESEARCH 
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coordinate*.    We may then write the equations of motion as 

Mr £.+M,uv<jr,qr , .    (3D 

where 

My * generalised mass for the rth node, 

q,. • deflection of the r*n node, 

UJ    s r     natural frequency. 

Or = generalized force exciting motion* in the rth mode. 

It i* well-known that Qj, may he derived from the principle of virtual work. 

When a pressure distribution act* on tho panel, the virtual work, &tf. given 

by a virtual displacement, 6«+ , is 

•                         • 
(32) 

Expressing y in term* of normal coordinates, we find that 

4*Z    ftnSin  nx 

• 
Ju*2   Sq»0 Stn   r7x 

Substituting into Iq.  (32), we obtain 

Qr«l*L*J    -44?   St/» fx 4x 

if'      ° 
(33) 
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The term Ky It giren "bjr 

Mr-J±f   Slo'rxd* ,^./c*^ M 

•M 

PAGE 15 

(3*0 

where 

(35) 

/*•   « mast par unit span 

M   * total mass of the panel 

With la.   (30) for A p, it followt that 

qr*luZ    f   6   J       Sinrxdx 

+ ^I    f   rf     /      Sin fjc<i>c 
»" Je    

T»>*l<i+t 

In using Iq.. (35) va mutt take 

a* defined by Bqe. (13) and (23). For abbreviation, lq. (35) may now be 

rewritten in the forms 

|Jt_r -1 *rr_^r. <£„ + I  S^Kf iV^    (36) 

and tf , $,  y   are identified ae follows! 

•.^^- «re,(»«>«- »»*5,U«)c.5 „» .t^l-^.x.^ (37 
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Physically, 0(vr     represent• the apparent oast effect of the ."> mode on the 

rth node, ^n,r    repreeente the corresponding damping, and v represent* the 

quasl- steady aerodynamic force. 

We may now introduce the functions, 

L  (n>•)~ \   S, (n fc") sin   mxdx   | 

V 
fsz(

n»m)* f 5,(n*)coS roxcix   I 

TC| (n,m)..^'wc,(.nx)sin n>x d*    1 
(38) 

which are evaluated in Appendix B. 

« 

Earing defined the functions of Xq.  (38), ve may write Xq..  (36) as 

^n,r*rfTplT^(n>l'-*)*i:'Sc.l(
n>ri'n)-- 

jTs  in**'")+^ Js (o^fO* 

ii-c.5 nir r               ^ 

Tf-X •7 (39) 
0 
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• n.r 

jTSj(r>,r-n)4-£ J"Sj(n,r+n) 4- 

I-COS *-*c. 
-*n /••"'"(^W 

PAGE   17 

(39) 

Making nee of formula*  (B.l)   to  (B.12), we may write,  for    n Jr 

where *   • Euler's constant »  1.781072, 

Similarly, for n » r,o(n n    becomes 

In a like manner, §n,r   *»*§ D« written, for  nfr 

(^0) 

(<U) 

(^2) 
AERO-ELASTIC AND STRUCTURES RESEARCH 
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and It is teen that, for n » r, §nn*0. 

Finally, the expression tor Vn#r    may he written, for   r\fr 

and, for n « r,   £n(„    becomes <*3> 

Ve now have all the coefficients,^  ,%   t \   '•• for evaluating the generalised 

force, Qy, as defined hy Xq.  (36).    It should he noted that: 

(1) *nr ^0 only when n and r are hoth even or hoth odd, i.e., the odd 

nodes do not contribute to the apparent mass of the even modes and 

vice versa; 

(2) $n r ^0    only when n and r are aoj*, hoth even or hoth add, i.e.  the 

odd modes contribute to the damping oi only the even modes and the 

even modes contribute only to the   odd modes; 

(3) $n «      s 0 i.e., there Is no damping of the mode due to its own 

motion; 

(U) ^r n    s j[h r   i.e.  the  quasi-steady forces are reciprocal; 

(5) V      ± Q   only when n and r are both eves or odd, i.e.  the odd modes 

do not contribute through their quasi-steady forces to the motion of 

the even modes   and vice versa; 

(6) The mutual effects of neighboring modes are in general larger than 

those of widely separated mode? , owing to the factor, l*1- n*   , 

appearing in the denominators of each coefficient; 

AERO-ELASTIC AND STRUCTURES RESEARCH 
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(7)    lor a giren r,  the apparent-mast and quasi-Btaady forces due to 

Jin h 
other modes diminishes in the manner—-— for large n y? r, and aa 

In r tor large r »  n. 

6. Iffectt on the Vibration Character! a tics Doe to the Aerodynamic Presenre 

Combining Eqs. (31) and (36), we now have a system of an Infinite 

number of linear differential equations: 

£,[(*$> L,-*T<„)i-ir*»r t"+("i?£ f.r£p)t}* 
r*t,Z, co 

0 

where 

& n r      s Kronecker•a symbol 

= 1 if n s r 

= 0 if n f r 

X      s ~ffi s mass ratio 

A new set of natural frequencies may now be found.    Assuming that 

in Iq.  <W0 , . 
— (CO T 

where QQ and o'  are the magnitude and frequency of the motion in the n 

normal coordinate, it follows that 
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zff«$r iBr-^)K*;.,u,- 1«^ U-£)}y„.o 
r-i,2 (*5> 

The new natural frequencies,*^   ,  therefore, satisfy the infinite determinant 

/*r>r/-0 
11^ r « I,It ..»»••• AD 

where 

'nr 
- /i'*( K /„,-«C )-'•«•• e„r +* -"•* c- r»r) 

•ft-       = modified reduced natural frequency 

= V 

=<J,ir    / 

(**) 

0*6a) 

Ar * original reduced natural frequency =°^2l 
TJ 

In evaluating the infinite determinant It is necessary to consider a finite 

number of modes. It is obvious that since the aerodynamic forces are smoothly 

distributed, their effect is likely to be confined only to the first few 

modes. For example, let us examine only the three lowest modes. 

-ji'YK-o(I>K-/i?-rl,      -''-ft'ft* -0'V„-y<i 

-iJi'Q ̂ | -Jt*(H-*»Uxrfrr**   -<*'$ <•** A3 -0 

31     93l 
-(*'* dz -A"("'*J>»4% 

<*7) 
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It It easily seen that the result will be an equation Involving real numbers 

only, since the real and imaginary terms always occur alternately in the 

determinant. Tor A5 • 0 a cubic in JV   is obtained, yielding in general the 

three modified natural frequencies. The solution is a function of two 

parameters — the mass ratio, K , and the reduced frequency, Jl~t. 

From the behavior of the coupling factors between the n  and the 

.th 
r  modes, it can be shown that the contribution due to the very high modes 

0  n 
is at most of the order, -—-.    Thus for the lower-node natural frequencies, the 

very high modes probably may be dropped without serious error.  $uch of course 

has always been the intuitive approach for systems involving a large number 

of degrees of freedom. Assuming the validity of this hypothesis, we can make 

the further deduction that the very high natural frequencies may also be 

regarded as independent of the lower modes. The argument is as follows. 

When the r  mode equation is written down for r » 1, it is seen that the 

very low modes have contributions of the order, _ • Since the very low modes 
n 

have been solved from a sub-determinant involving an adequate number of 

modes,  their appearance in the equations for the very high modes may be 

treated as being an external forcing function, and should not influence the 

natural frequencies.    Consequently only an adequate sub-determinant involving 

modes of the same order as the rth mode is needed to evaluate the rth natural 

frequency.    Besides V      , only   B   s     exist for large r, and are of the 

order<   \£s\   ' 
In fact, the diagonal terms, A. , are the dominant terms under 

ordinary circumstances, when the aerodynamic reactions are relatively small. 
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Without the aerodynamic reactions, all terms except those on the diagonal 

vanish. Now for laree value* ox" r, 

Arr*»-K-a'%HJl
2

r-Yrr 

Since Jlr'*of the order of r* • »adYrr    *• °* **** ord«r °* r» vllile$»»r    *• 

at most of the order unity, the constant parts in the diagonal terms become 

very large in comparison with those in terms off the diagonal. It is apparent 

that if iV is evaluated from the diagonal terms only, an adequate approxima- 

tion for the higher modes may he obtained. 

The correction to this approximation, if desired, can then he 

worked out by a procedure developed by iuord Raylsigh:    Assuming that the 

system Is excited in the modified rth node (which is almost the original rth 

mode, since the coupling terms are assumed to he small), and neglecting 

second order terms, we have: 

from the equation for the n     mode, 

from the equation for the r     mode, 

n.i ' 6 

* 
where J   indicates that n = r is excluded. It follows immediately, then, that 

Arr « Z        A»r*rn ^ 
h«/ 

^»n» 

*    Hef. 3, pp.  113 - 115. also pp. 136 - 137 

AERO-ELASTIC AND STRUCTURES RESEARCH 



MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
Department of Aeronautical Engineering 

CONTRACT NO.   15 orl-07833 
HR 06U-259 

PAGE 23 

The rightr-hand sids of Iq..  (^9) i« already a second-order quantity.    Tor a 

fl«»st approximation,  therefore, 

.2 
Arr»-(K-«frr)Jl'   *KJ1*-Vrr*^0 

whence wo see  that 

Jt ,*• (50) 

The value of J|'   can then replace the unknown ft' in the right-hand side of 

Sq.   (1*9), and a second approximation Is obtained. 

*       ^r     'I    IMS'    &     fk.^jr/C^rrjr<-<J 
(50a) 

Thus the correction terns are mainly those due to the neighboring modes    n^s-r 

For    r7?l,  the important result here is that the modified natural 

frequency is given by 

Since Y       is always positive,  the natural frequency is reduced.    The percen- 

tage reduction decreases as r', and may be neglected for the high modes. 

The reduction is also inversely proportional to the mass ratio of the panel  to 

air.    As altitude increases,  X   Increases, and the reduction in the natural 

frequsncy becomes smaller and smaller. 

It may be noted that Xq.   (1*9) and the succeeding approximation 

procedure say also be used for the lower modes, provided that the diagonal 
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terms remain dominant.    Such -would be the case when \(  and/or j\a,  is large 

in comparison with the Cr      , k      and V      coefficients. 

7.    Farther Investigations and Some numerical Reeulte Based on the First Tvo 

Modes 

It ie deeirahle to be able to Indicate the order of magnitude of the 

aerodynamic effect on the vibration characteristics of the lover modet, 

following the general remarks on the high modes in the previous section.    For 

this purpose let us consider only the first  tvo modes.    The coefficients of    , 

etc.  are found to be 

$„*   °     > SIM* -1.9**Ait-*LM*> $****    > 

Thua the frequency equation becomes 

Z / 
+ J1    {-/.S5.S)(/.38*)-0 (5D 

Hoting that for simply-supported ends, fl - -f fl f   , ve obtain after algebraic 

manipulation, 
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+ l(,(kSL*-.*S*)(KlL*-2>+*)~0 (51a) 

Neglecting aerodynamic force* correspond* to the case of K-*-». for which the 

two roots of IV    reduce toil, and 16Jl , ae required. Tor large values of 

K, the roots can be expressed in descending powers of k , in the manner 

( 

(52) 

\)0 andO^  being the modified first and second natural frequencies resulting 

from the presence of the surrounding fluid. It should be pointed out that, 

even for the first two modes, the natural frequencies still tend to be reduced. 

Tor the higher modes the same conclusion was reached above. 

When Jl* is large, Zq. (51a) may be simplified by dropping terms of 

the order of -*j-   .    Eros, for fi* »i 

Tor a first approximation,  the frequency ratio,—    ,  is,  then, a function 

only of the mass ratio, \( .    Th#» physical interpretation of  this ib that the 

modification is now mainly due to  the apparent mass of the fluid associated 
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with the panel vibration.    In contrast, the previous correction for the case, 

K >> l, may be regarded to originate largely from the quasi-steady aerodyna- 

mic forces. 

Tor numerical examples, let us consider some typical valuee. 

(1) Duralumin panel, 12" between supports, .06k" 

atmosphere, U a 500 ft/sec. 

it<a*   .026 slugs/ft 

thick, sea level 

ui, ss*   870 rad/sec •i    c 

X  m*    10.9 

*** 500 X 1* 

Trom Bis. (52), we obtain 

/ 

i.e., 

21 «*.  .95*     ,       *£ —   5a 

(2) Steel panel, 2k" between supports, £" thick, 

i£«*.32 «lugs/ft 

Ui •*•» 2,600 rad/eec 

K**.08 

in water, U = 30 ft/sec 

n   _ amo©*2 * 180 
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Bq«  (53) becomes 
>• va 

PAGE  27 

from which it follows that 

Oti^Se    , ^£^.5-4 
u). VP* 

A remark may ha inserted here regarding the applicability of 

formulae derived in this report to panels in water and moving at relatively 

slow speeds. The theory, of course, is still valid, provided only that the 

deflections he sufficiently small for the linearization of the boundary 

conditions. The typical values in the above example, on the other hand, 

seem to indicate that \(  will be small and SI,  large. If K is small, the 

natural modes in vacuo are poor approximations to the true mode shapes. 

Strong coupling effects, therefore must be expected. Probably more than 

two modes are necessary even for a rough estimate of the modified first 

natural frequency. 

8ome discussions on the possibility of dynamic Instability 

of the panel nay also be mads on the basis of the two-mode representation. 

Let us consider again Xq. (51a). It is apparent that a divergent motion 

sets in, if the value of St!    satisfying Zq. (51a) becomes negative or complex. 

A locus in the X- ilf" , plane can be drawn to separate the stable and unstable 

regions in terms of these two parameters. Regarding Iq. (51a) as of the 

typical fcrm 
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7 •<*£   •: H*$   ,wl ¥e tee that the conditions for positive, real roots of x are 

(1) a, £, C >0 

(2) B2 ^ fcaC 

Since K'9. the coefficient of Si    ie always positive. Hence the conditions 

for stability reduce to 

(a)   KA* 2 »"
l<~7' 

• 

(b)   (tf-rt.* -.a55)(K-0.*-a.4>)2-0 

i.e. ,355" *K^? or KH***.43 

(5*0 

(55) 

. 

(56) 

Instead of tracing the complete boundary defined by Iq. (56), a simplified 

criterion may be derived for the case, \(P^h    K* (56) is then approximated 

lo*2-?)*^-.*"^] *.u*(t*^)M**ito&-*!$ 
Within elide-rule accuracy, the result is 

Wil,,fc^sr*.^+d(-jL) 

(56a) 

(57) 

Combining the conditione (5*0,  (55) «ad (57):    we conclude    that for U »l . 
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stability prevails if 
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kil! >2.f3 (58) 

Physically, this means that the quasi-steady forces tend to reduce the 

effective spring constant in each mode.    The strongest Influence is on the 

first mode.    When the effective spring constant of the first mode is reduced 

to a negative value, divergent motion will naturally result.    The same 

influence on the higher modes is much smaller.    T?or\(*>l , furthermore, the 

damping and apparent mass terms are of no consequence in the determination 

of the stability range, 

For a numerical example, let us take a duralumin panel of .06M 

thick and ^8" "between supports, at sea-level atmosphere.    One finds 

/**-. «*    .026 slugs/ft 

U),   S5«   55 rad/sec 

K   •**   2,7 

The critical value of flt    is, by Sq.   (58} 

>2   _ 2.4-3 f-fl.i C?. 2.7 
0.9 

Hence,  the   "critical speed" is 

fr\r. 
£30 %c. 

It must, however, "be stressed that the results in this section can 

be valid only when a two-mode representation is adequate to describe panel 

vibration.    The discussion on stability is further restricted by the assump- 

tion of small disturbances.    Whether the stability involving finite deflec- 
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tions has roughly the same criterion or not, is a question beyond the scope 

of linearized the&ry. It may further he noted that thi dynamic instability 

described above is different from the conventional "flutter" phenomenon. In 

"flutter", we may recall that the resultant damping of the system vanishes 

at the critical speed, while here the resultant spring constant is the 

criterion, at least for K »l (relatively heavy panel). 

8* Summary of Hesuits. 

(1) Based upon the linearised theory for small disturbances, the 

velocity potential of arbitrary transient motions of a two-dimensional hump, 

on an otherwise flat surface, in a uniform incompressible stream has been 

determined in terms of the Si - and Ci - functions. 

(2) Application of the theory is made to the problem of a simply- 

supported uniform panel.  The effect on the vibration characteristics depends 

on the usual parameters, •0.i-^zi—   (the reduced frequency of the first 

natural mode) and K- ^~     (the mass ratio of panel  to air).    Coefficients 

representing the apparent mass, damping and quasi-steady forces are obtained, 

in a form for use with normal coordinates, which are strictly true for a 

simply-supported panel in vacuo. 

(3)    J?or the higher modes, only the quasi-steady aerodynamic forces 

have some contributions.    The result is a lower natural frequency.    The 

percentage reduction, however, decreases very rapidly for higher and higher 

AERO-ELASTIC AND STRUCTURES RESEARCH 



k» am •"•"•""Tgigfi j ii 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
Department of Aeronautical Engineering 

CONTRACT NO.   H5 ori-07833 
m 06^-259 

PAGE 31 

modes.    It it, furthermore, inversely proportional to the mass ratio,  K . 

and the square of the reduced frequency,-^. 

(4) An iterative procedure, following Rayleigh,, is Indicated for the 

evaluation of modified natural frequencies whsa K   and/or II  >>i   .    Panels 

on aircraft usually belong to the category of large  K   • while panels on 

submarines in water may corrBspond to the latter case of   1LI »| . 

(5) Panel "behavior based on a representation of the first two modes is 

studied in more detail.    Approximate formulas are given for cases when K»l 

and when Av|   .    it is again fouad that the natural frequencies tend to 

diminish in the presence of  the surrounding fluid. 

(6)    A criterion for dynamic stability is also derived eased on the 

two-mode representation, namely, for stability 

W-H-*  >2.43 

To Illustrate, a duralumin panel of U* span and .064" thick is estimated to 

have a critical speed of about 230 ft/sec at sea-level. 
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APPENDIX    A 

Modification on 0t)  for Odd n . to Satisfy Conditions at Infinity- 

Let us consider the bump 

-Q elsewhere J 

where n is an odd integer. 2q.   (21) shows that the closure condition (9) is 

violated.    The streamline does not return to the flat boundary after passing 

the hump.    It is obvious, however, that the streamline could be made to 

return to the flat boundary by the introduction of discontinuities.    Since 

the condition (AX)  results from the transient motion of a sine wave boundary, 

the general configuration is symmetrical about the mid-point (X--*r )•    The 

discontinuities suet bear the same kind of symmetry; and, furthermore, can 

only occur at the end points x = 0 and x s TT. 

The significance of these seemingly artificial discontinuities 

probably could be better understood from a different point of view.    Begard- 

ing (Al) as the description of the slope along a bump in steady flow, one 

sees immediately that the shape of the hypothetical bu-np must be a cosine 

wave.    If an up-and-down displacement of the cosine wave is made,  two dis- 

continuities are brought in at the end point.    These discontinuities being 

limited to a very small segment, will not alter the condition (Al), but will 

serve to change the streamline directions quite abruptly in rising from and 

returning back to the flat boundary. 

AERO-ELASTIC AND STRUCTURES RESEARCH 



' 
• 

sea 
i 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
ueperuitent or Aeroaauucai engineering 

PAGE  3* CONTRACT NO. 15 ori-07833 
IR 06^259 

. 

To determine the effect of these discontinuities on the flow "by 

means of the linearised theory, a limiting process is necessary.    Let £q. 

(Al) first be modified into 
d I      •*„ Sir? fh Sin n*    3    °^ x<-Tf 

Vtj«o 
• 111 /— i* - X < © 

elsewhere -   0 (A2) 

where £   is a snail quantity.    The magnitude, An . 1« chosen to satisfy the 

closure condition (9): 

I   ^Ld^+       An Sin J   Sin n> dx -». J   4?- <***o 

hence 
AH  -- —-  (A3) 

remembering that n is odd. Using Bq. (7), the increment to B(o() becomes 

"M+uCfrl,    )(fe-l-d.) 

2TT 

Then by Jq.  (6), we have 

An /        -i**1'      -Cu(TT+S)       itcC\ 
(A4) 

-abc*)* 2ABM AH'    t-      .«*'   .-c*^ e    -€ jr.-*4")] (A5) 

Taking the limit, 6"-**o 
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ur*z L                     J 

IT* 

Substituting into lq.  (3), we find that 

A v« [/:*we*M\f-}. -£/;L(£±£i^jdK 

s ~A» j    cos * x • cos <(TT-*) ^4/ , *» S<n 4"» jf« ** «• c*Kfr-x) . 

, 

when (A7) is added to lq.   (19). the divergent terms for odd h   cancel.    The 

expression given by Bq.  (19a) is thus established. 

•• 

• 

. 
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APPIKDIX   B 

1 (valuation of Integrals Appearing in the Generalised lore e 

in this The integrals introduced In 1%.  (38) will toe eva.lua.tsd 

appendix t 

(1)   JS|(»> m)>s j    S,(nM.) Sin mx. <LK 

<2) Ts^Cn, 
ft 

n*)*J   5,(nx) cos m x dx 
• 

0) Ic, C", m)*J   C,(nx)SCn rwxdx 
• 

W Tcx(r,, W)*J   C,(rtx)c«4    Wx dx 

(5)  /si» rk ia-fc d* • s • 

(6) jf Sin rxfi-^^dx 

(l)T5((r, ,<*>) 

By the definition of 5, (n*),wt h*Y* 

?$«(»' -)-/7r'^ris';+it — Ix 
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nits HT-TT /* 
) T5>,m)--j      ^jf   + J      js,» r*?x «IJ* 

%Lr»*<i* 

-/ ^Li .  cos n %lr, -t t j£ 
.        /   * * J 

-j St ('n'Fr)+^S(((rr, + »)ir)t^S((±{n-r*i)'ir)| j-oe^  r*» 
m 

(Bl) 

where  the upper signs in the last term are used when   n > m, and the lower 

signs are used when   n< m.    In particular, 
Js(<»V>)*Q 

(2)       i,(n,**>) 

In a similar manner, 

cos mxd.x 

• — J_t^i_J?l^r / Sin„t bin t   j± 

after changing the order of intergration.  The integral being a divergent 

one, a limiting procedure must be adopted. Thus for n ^ ra, m ft 0, we have 

Aran.n Agnr AMF> yroi ?rn rpr<t PF^FAPPH 
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*i^ '    ' a*1f-*.©^, ^ 

«c       _ nit IH.SH" tim r r *    (       7  rs—*—i^ *4   J 

j£f-c*(|.-*jc)+c«(o*Sw}] 

,-~—» 
n.*f !*»•» n _ li£^Zjrci(/B.„^).ci(tn.»)trl)fi„/2^/y 

(B2) 

The logarithmic term it the proper limit of the sum in the curly bracket, 

•ince the asymptotic behavior of C( is known (Ref.  2). 

-5   being Baler'• Constant, equal to 1.78107 

Similarly for   n = m,   n ^ 0 

^..M.-lUtti: 
'/ 

— H-CoS n7T 
nw 

Urn    f    i-Co***^ 
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Osing the asymptotic behavior given by Bq..   (B3), we finally obtain 

J (ntn)--l±*glJ22L[-Ci(ar>rr)+U ay**]        (BU) 

Another special case results when a = 0. The result is readily 

obtained by the same procedure, 

(3) J§ («.»•) 

(B5> 

d+   Sir*   mxJx 

/* f   ^nC»-*) ,»* 

-?.{(: C\c-¥Ai%in mxdx. 

and  J 

by their proper Halting values.    The limiting value of the combination in 

the curly bracket must exist because it is simply     f       , though it is 

artificially split into two terms.    The integration may next be carried out 

easily after a change of the order of integration as was done for J     . 

The result is, for    n<ytm,   m>^0, 

^*u(mr)+ln/1JI±^f] (16) 
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^(..^—i±^ZrC,(*nir)-aCi(nfr)*l. *f-\        (17) 

and, for     rrj ~ O 

X  (jn, <0*o 

.7  6*»j) involve terms which appear in Jl     .    fhe result is, 

J   (n,r»> i^f^T (Si((n«-m)ir)+ Si(±(n-w»j (B8) 

where in the last term the upper signs are used when n > a and lower signs are 

used when a<; m.    For a * 0,   Jf  (n 6V"0   • 
2 ' 

(5)     j   Sin  r*  An   -£_   c|x 

rx JLr.  -* 
Tf-X 4 

f  Sin rx A» (iT-*) dx   = 

/* (^ I + Cosr 1T^ J     sin  rx    Jin x  dx- 

(B9) 

which result is also obvious from symmetry considerations.    Integrating by 

parts, 
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J Sin rv   2.wx Jx r 

PAGE n 

-•£/*«* r^Z V - dCnr)- ^ /*/, * -^~ frO// 
*-*-• 

(BIO) 

Bonce, 
-if 

j Sin r»   $L*»X av - LtS2 riyp- r* l»iT-Ci(r<ny)+Jt„/r'] 

/+<:•« ^-^[An   riry-Cl(rir)J (m) 

(6) jf »•'*(*-**) dx 

Again fioa «f—try conaiderati oae, 

(i + ce«rTr)Si(rtf) (B12) 
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rc(n,n)_i±^i^(ci(2nTr)^G(n?r).ln *£2L (B7) 

and, for    K>7 - O 

Jc (jl,<0=O 

jr ('yvi»j) inrolre terms which appear in 3*      •    She result is, 

B8) 

where in the last texn the upper signs are usud when n > a and lower signs rre 

used when n<; m.    lor a * 0,   Jr  (n,o}-0   • 

r • Si 1 (5)     }    Si*   fK   A"   £—   dx 

/     S«lf   tx $~r>   -^—<dx  » I  sin rx   in xdx - 
-^ TT-X 4 

f  Sin rx £w(lT-x)clx   = 

CB9) 

which result is also obvious from symmetry considerations. Integrating by 

parts, 
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f  Sin r-.<   2.wx Jk * — r 
• 7o 

-jat^ 

-^/wi r rrjtn ->r - CtCrrr)- ^ /'/, * - CJ (V*j// 
g-*"9 

(BIO) 

Hence, 
if 

L*^12t^  rTry.Ci(riT)7   ^ 

(6) ^ *•'*(*-&,)* 

lgain fzoa tjraaetrj considerations, 

(i + cosr-Tf)Si(rir) (B12) 
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